所谓的中层表达就是一些服装属性。作为隐变量的SVM的隐含层结点。
To narrow the semantic gap between the low-level features of clothing and the high-level occasion categories, we adopt middle-level clothing attributes (e.g., clothing category, color, pattern) as a bridge. More specifi- cally, the clothing attributes are treated as latent variables in our proposed latent Support Vector Machine (SVM) based recommendation model.
主要目标
- 服装推荐(suggestion)
- 服装搭配(pairing)
parsing部分
- 特征
从姿态估计的20个上身区域和10个下身区域提取5种特征,包括:HOG,LBP,color moment, 色彩直方图,肤色。
最终生成特征每个part28770维度 - latent SVM
(x, a u , a l , o)
其中x为特征,au和al分别为上下半身的中层特征,即属性,作为隐变量。